Edsger W. Dijkstra gave a lecture, in 1972, that has since been come to be called “The Humble Programmer”. It’s a short piece that explains why software development, why programming, was growing more, not less complex over time, and some inspiration to be found in the dealing with it. There’s some choice quotes in here that I’m going to include, but read the whole thing.
On LISP:
With a few very basic principles at its foundation, it has shown a remarkable stability. Besides that, LISP has been the carrier for a considerable number of in a sense our most sophisticated computer applications. LISP has jokingly been described as “the most intelligent way to misuse a computer”. I think that description a great compliment because it transmits the full flavour of liberation: it has assisted a number of our most gifted fellow humans in thinking previously impossible thoughts.
Lets call it TDD before TDD was coined:
Today a usual technique is to make a program and then to test it. But: program testing can be a very effective way to show the presence of bugs, but is hopelessly inadequate for showing their absence. The only effective way to raise the confidence level of a program significantly is to give a convincing proof of its correctness. But one should not first make the program and then prove its correctness, because then the requirement of providing the proof would only increase the poor programmer’s burden. On the contrary: the programmer should let correctness proof and program grow hand in hand.
On decomposing systems:
It has been suggested that there is some kind of law of nature telling us that the amount of intellectual effort needed grows with the square of program length. But, thank goodness, no one has been able to prove this law. And this is because it need not be true. We all know that the only mental tool by means of which a very finite piece of reasoning can cover a myriad cases is called “abstraction”; as a result the effective exploitation of his powers of abstraction must be regarded as one of the most vital activities of a competent programmer. In this connection it might be worth-while to point out that the purpose of abstracting is not to be vague, but to create a new semantic level in which one can be absolutely precise. Of course I have tried to find a fundamental cause that would prevent our abstraction mechanisms from being sufficiently effective. But no matter how hard I tried, I did not find such a cause. As a result I tend to the assumption —up till now not disproved by experience— that by suitable application of our powers of abstraction, the intellectual effort needed to conceive or to understand a program need not grow more than proportional to program length. But a by-product of these investigations may be of much greater practical significance, and is, in fact, the basis of my fourth argument. The by-product was the identification of a number of patterns of abstraction that play a vital role in the whole process of composing programs. Enough is now known about these patterns of abstraction that you could devote a lecture to about each of them.
On education:
As each serious revolution, it will provoke violent opposition and one can ask oneself where to expect the conservative forces trying to counteract such a development. I don’t expect them primarily in big business, not even in the computer business; I expect them rather in the educational institutions that provide today’s training and in those conservative groups of computer users that think their old programs so important that they don’t think it worth-while to rewrite and improve them. In this connection it is sad to observe that on many a university campus the choice of the central computing facility has too often been determined by the demands of a few established but expensive applications with a disregard of the question how many thousands of “small users” that are willing to write their own programs were going to suffer from this choice. Too often, for instance, high-energy physics seems to have blackmailed the scientific community with the price of its remaining experimental equipment. The easiest answer, of course, is a flat denial of the technical feasibility, but I am afraid that you need pretty strong arguments for that. No reassurance, alas, can be obtained from the remark that the intellectual ceiling of today’s average programmer will prevent the revolution from taking place: with others programming so much more effectively, he is liable to be edged out of the picture anyway.
There may also be political impediments. Even if we know how to educate tomorrow’s professional programmer, it is not certain that the society we are living in will allow us to do so. The first effect of teaching a methodology —rather than disseminating knowledge— is that of enhancing the capacities of the already capable, thus magnifying the difference in intelligence. In a society in which the educational system is used as an instrument for the establishment of a homogenized culture, in which the cream is prevented from rising to the top, the education of competent programmers could be politically impalatable.
On recognizing the difficulty, challenge, and opportunity:
Automatic computers have now been with us for a quarter of a century. They have had a great impact on our society in their capacity of tools, but in that capacity their influence will be but a ripple on the surface of our culture, compared with the much more profound influence they will have in their capacity of intellectual challenge without precedent in the cultural history of mankind. Hierarchical systems seem to have the property that something considered as an undivided entity on one level, is considered as a composite object on the next lower level of greater detail; as a result the natural grain of space or time that is applicable at each level decreases by an order of magnitude when we shift our attention from one level to the next lower one. We understand walls in terms of bricks, bricks in terms of crystals, crystals in terms of molecules etc. As a result the number of levels that can be distinguished meaningfully in a hierarchical system is kind of proportional to the logarithm of the ratio between the largest and the smallest grain, and therefore, unless this ratio is very large, we cannot expect many levels. In computer programming our basic building block has an associated time grain of less than a microsecond, but our program may take hours of computation time. I do not know of any other technology covering a ratio of 10/10 or more: the computer, by virtue of its fantastic speed, seems to be the first to provide us with an environment where highly hierarchical artefacts are both possible and necessary. This challenge, viz. the confrontation with the programming task, is so unique that this novel experience can teach us a lot about ourselves. It should deepen our understanding of the processes of design and creation, it should give us better control over the task of organizing our thoughts. If it did not do so, to my taste we should not deserve the computer at all!
It has already taught us a few lessons, and the one I have chosen to stress in this talk is the following. We shall do a much better programming job, provided that we approach the task with a full appreciation of its tremendous difficulty, provided that we stick to modest and elegant programming languages, provided that we respect the intrinsic limitations of the human mind and approach the task as Very Humble Programmers.